Convective Heat Transfer (6)
Forced Convection (8)

Martin Andersson
Agenda

• Convective heat transfer
• Continuity eq.
• Convective duct flow (introduction to ch. 8)
Convective heat transfer

FIG. 5-1
Sketch showing different boundary-layer flow regimes on a flat plate.

\[\text{Re}_x = \frac{u_\infty x}{\nu} \]
Convective heat transfer

FIG. 5-2
Laminar velocity profile on a flat plate.
Convective heat transfer

\[\dot{Q} = \alpha(t_f - t_w)A \]
Convective heat transfer

\[\dot{Q} = \alpha(t_f - t_w)A \]

\[x = 0 \Rightarrow u, v, w = 0 \Rightarrow \text{heat conduction in the fluid} \]

Introduction of heat transfer coefficient:

\[\alpha = \frac{\mathcal{G}/A}{t_w - t_f} = -\frac{\lambda_f \left(\frac{\partial t}{\partial y} \right)_{x=0}}{t_w - t_f} \quad (6-3) \]
Convective heat transfer

Objective (of chapter 6-11):
Determine α and the parameters influencing it for prescribed $t_w(x)$ or $q_w(x) = Q/A$
Order of magnitude for \(\alpha \)

<table>
<thead>
<tr>
<th>Medium</th>
<th>(\alpha) W/m(^2)K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (1 bar); natural convection</td>
<td>2-20</td>
</tr>
<tr>
<td>Air (1 bar); forced convection</td>
<td>10-200</td>
</tr>
<tr>
<td>Air (250 bar); forced convection</td>
<td>200-1000</td>
</tr>
<tr>
<td>Water; forced convection</td>
<td>500-5000</td>
</tr>
<tr>
<td>Organic liquids; forced convection</td>
<td>100-1000</td>
</tr>
<tr>
<td>Condensation (water)</td>
<td>2000-50000</td>
</tr>
<tr>
<td>Condensation (organic vapors)</td>
<td>500-10000</td>
</tr>
<tr>
<td>Evaporation, boiling, (water)</td>
<td>2000-100000</td>
</tr>
<tr>
<td>Evaporation, boiling (organic liquids)</td>
<td>500-50000</td>
</tr>
</tbody>
</table>
How to do it? (to describe convective HT)
What are the tools?

Fluid motion:
Mass conservation equation (Continuity eqn)
Momentum equations (Newton’s second law)

Energy balance in the fluid
First law of thermodynamics for an open system
Continuity eq.
Expresses that mass is constant and not destroyable.

\[
\frac{\partial \rho}{\partial \tau} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0 \quad (6-4)
\]

Especially for
steady state, incompressible flow,
two-dimensional case

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (6-5)
\]
Resulting momentum equations – 2 dim.

\[\hat{x} : \quad \rho \left(\frac{\partial u}{\partial \tau} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \rho F_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \]

\[\hat{y} : \quad \rho \left(\frac{\partial v}{\partial \tau} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = \rho F_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \]

Impossible to solve by hand, need to be simplified… (chapter 6, 7 and 8)
Temperature Equation

\[
\frac{\partial t}{\partial x} u + \frac{\partial t}{\partial y} v + \frac{\partial t}{\partial z} w = \frac{\lambda}{\rho c_p} \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)
\]

Unpossible to solve by hand, need to be simplified… (chapter 6, 7 and 8)
Boundary layer approximations (laminar case)

Why different fields for temperature and velocity ???
Boundary layer theory developed by Prandtl

\[u \gg v \]

If the boundary layer thickness is very small

If 2D

\[\frac{\partial u}{\partial y} \gg \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \]

\[\frac{\partial t}{\partial y} \gg \frac{\partial t}{\partial x} \]
Boundary layer approximations – Prandtl’s theory

\[p = p(x) \]

From Navier-Stokes eqn in the y-direction it is found that the pressure is independent of y

\[\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \rho F_x - \frac{dp}{dx} + \mu \frac{\partial^2 u}{\partial y^2} \]

Then Navier Stokes in the x-direction is simplified to:

\[u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial y} = \frac{\lambda}{\rho c_p} \frac{\partial^2 t}{\partial y^2} \]

Also the temperature field is simplified
Boundary layer approximations – Prandtl’s theory

\[p + \frac{1}{2} \rho U^2 = \text{konstant} \]

Bernoulli’s eqn describes the flow outside the boundary layer

\[\frac{dp}{dx} = -\rho U \frac{dU}{dx} \]

\[\text{Pr} = \frac{\nu \rho c_p}{\lambda} = \frac{\mu c_p}{\lambda} \]

The dimensionless Prandtl number is introduced
Boundary layer equations

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

Mass conservation

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = U \frac{dU}{dx} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2} \]

Momentum conservation

\[u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial y} = \frac{\mu}{\rho \text{Pr}} \frac{\partial^2 t}{\partial y^2} \]

Energy conservation
Boundary layers

\[5 \cdot 10^5 \]

\[\text{Re}_c = U_\infty x_c / \nu \]

\[\text{Nu} = f_7 (\text{Re}, \text{Pr}) \]
Continuity eq. (expresses that mass is constant and not destroyable)

\[m_{x_1} = \rho u \, dy \, dz \]

\[\Delta \dot{m}_x = \frac{\partial}{\partial x} (\rho u) dx \, dy \, dz \]

Net mass flow out in x-direction

Analogous in y- and z-directions

\[\Delta \dot{m}_y = \frac{\partial}{\partial y} (\rho v) dy \, dx \, dz \]
\[\Delta \dot{m}_z = \frac{\partial}{\partial z} (\rho w) dz \, dx \, dy \]

Netto utströmmat, net flow out : \(\Delta \dot{m}_x + \Delta \dot{m}_y + \Delta \dot{m}_z \)

Net mass flow out \(\Rightarrow \) Reduction in mass within volume element
Cont. continuity eq.

Reduction per time unit:

\[
\frac{\partial \rho}{\partial \tau} \, dx \, dy \, dz
\]

\[
\therefore \quad - \frac{\partial \rho}{\partial \tau} = \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w)
\]

Consider a mass balance for the volume element at the previous page

\[
\frac{\partial \rho}{\partial \tau} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0 \quad (6 - 4)
\]

Especially for steady state, incompressible flow, two-dimensional case

\[
\Rightarrow \quad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (6 - 5)
\]
Navier – Stokes’ ekvationer (eqs.)
Derived from Newton’s second law

\[
m \cdot \vec{a} = \vec{F}
\]

\[
m = \rho \, dx \, dy \, dz
\]

\[
\vec{a} = \left(\frac{du}{d\tau}, \frac{dv}{d\tau}, \frac{dw}{d\tau} \right)
\]

but

\[
u = u(x, y, z, \tau), \quad v = v(x, y, z, \tau), \quad w = w(x, y, z, \tau)
\]
Forces

\[\vec{F} \]

The surface forces act on the boundary surfaces of the fluid element and are acting as either normal forces or shear forces.

a. volume forces \((F_x, F_y, F_z)\) are calculated per unit mass, \(N/kg\)

b. stresses \(\sigma_{ij}\) \(N/m^2\)
Forces The surface forces are calculated per unit area and are called stresses

\[\vec{F} \]

a. volume forces \((F_x, F_y, F_z)\) are calculated per unit mass, \(\text{N/kg}\)

b. stresses \(\sigma_{ij}\) \(\text{N/m}^2\)

\[
\sigma_{ij} = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
\]

Stresses for an element \(\text{dxdydz}\)
Signs for the stresses
Signs for the stresses

\[\sigma_{xx} \]
\[\sigma_{yy} \]
\[\sigma_{yx} \]
\[\sigma_{xy} \]

Resulting stresses

\[\sigma_{xx} + \frac{\partial}{\partial x} (\sigma_{xx})dx \]
\[\sigma_{xy} + \frac{\partial}{\partial x} (\sigma_{xy})dx \]
\[\sigma_{yx} + \frac{\partial}{\partial y} (\sigma_{yx})dy \]
\[\sigma_{yy} + \frac{\partial}{\partial y} (\sigma_{yy})dy \]
Net force in x-direction (for the 3D case)

\[\frac{\partial}{\partial x}(\sigma_{xx})dx dy dz + \frac{\partial}{\partial y}(\sigma_{yx})dy dx dz + \frac{\partial}{\partial z}(\sigma_{zx})dz dx dy \]

\[\frac{\partial}{\partial x_i}(\sigma_{ji})dx dy dz \]
Examples of stresses

\[\sigma_{xx} = -p + 2\mu e_{xx} = -p + 2\mu \frac{\partial u}{\partial x} \]

\[\sigma_{xy} = \sigma_{yx} = 2\mu e_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \]

\[\sigma_{yy} = -p + 2\mu e_{yy} = -p + 2\mu \frac{\partial v}{\partial y} \]
Resulting momentum equations

\[\hat{x} : \rho \left(\frac{\partial u}{\partial \tau} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \rho F_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \]

\[\hat{y} : \rho \left(\frac{\partial v}{\partial \tau} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = \rho F_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \]
Energy eq. (First law of thermodynamics of an open system), ⇒ Temperature field eq.

\[dQ = dH \]

Neglecting kinetic and potential energy

Net heat to element =

Change of enthalpy flow
Heat conduction in the fluid (calculating the heat flow as in chapter 1)

\[
\dot{Q}_x = -\lambda A \frac{\partial t}{\partial x} = -\lambda dydz \frac{\partial t}{\partial x}
\]

\[
\dot{Q}_{x+dx} = \dot{Q}_x + \frac{\partial \dot{Q}_x}{\partial x} \, dx =
\]

\[
= -\lambda \frac{\partial t}{\partial x} dydz - \frac{\partial}{\partial x} (\lambda \frac{\partial t}{\partial x}) dx dydz
\]

\[
\Delta \dot{Q}_x = \dot{Q}_{x+dx} - \dot{Q}_x = -\frac{\partial}{\partial x} (\lambda \frac{\partial t}{\partial x}) dx dydz
\]

6.24
Analogous in y- and z-directions

\[
\Delta \dot{Q}_y = - \frac{\partial}{\partial y} (\lambda \frac{\partial t}{\partial y}) dy \ dx \ dz
\]

\[
\Delta \dot{Q}_z = - \frac{\partial}{\partial z} (\lambda \frac{\partial t}{\partial z}) dz \ dx \ dy
\]

\[
d\dot{Q} = \Delta \dot{Q}_x + \Delta \dot{Q}_y + \Delta \dot{Q}_z
\]

\[
sign \text{ convention for heat } d\dot{Q}
\]

\[
d\dot{Q} = \left\{ \frac{\partial}{\partial x} (\lambda \frac{\partial t}{\partial x}) + \frac{\partial}{\partial y} (\lambda \frac{\partial t}{\partial y}) + \frac{\partial}{\partial z} (\lambda \frac{\partial t}{\partial z}) \right\} dx \ dy \ dz
\]

(6-27)
Enthalpy flows and changes

• Flow of enthalpy in the x-direction

\[\dot{H}_x = \dot{m}_x h = \rho u \, dy \, dz \, h \]

\[\Rightarrow \, d\dot{H}_x = \rho h \frac{\partial u}{\partial x} \, dx \, dy \, dz + \rho u \frac{\partial h}{\partial x} \, dx \, dy \, dz \]
Enthalpy changes

• y- and z-directions

\[
d\dot{H}_y = \rho h \frac{\partial v}{\partial y} dx\,dy\,dz + \rho v \frac{\partial h}{\partial y} dx\,dy\,dz \quad 6.29
\]

\[
d\dot{H}_z = \rho h \frac{\partial w}{\partial z} dx\,dy\,dz + \rho w \frac{\partial h}{\partial z} dx\,dy\,dz \quad 6.30
\]
Total change in enthalpy

\[dH = dH_x + dH_y + dH_z = \]

\[= \rho h \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) dx dy dz + \]

\[\rho \left(u \frac{\partial h}{\partial x} + v \frac{\partial h}{\partial y} + w \frac{\partial h}{\partial z} \right) dx dy dz \]
Enthalpy vs temperature

\[h = h(p, t) \]

\[\Rightarrow dh = \left(\frac{\partial h}{\partial p} \right)_t dp + \left(\frac{\partial h}{\partial t} \right)_p dt \]

6.33
Enthalpy vs temperature

\[
c_p = \left(\frac{\partial h}{\partial t} \right)_p
\]

By definition

For ideal gases the enthalpy is independent of pressure, i.e.,
\[
(\partial h / \partial p)_t \equiv 0
\]

For liquids, one commonly assumes that the derivative
\[
(\partial h / \partial p)_t
\]
is small and/or that the pressure variation \(dp\) is small compared to the change in temperature.

Then generally one states \(dh = c_p \, dt\)

i.e., enthalphy is coupled to temperature via the heat capacity
Temperature Equation

Rewriting eqn 6.32 as a function of T instead of h

\[u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial y} + w \frac{\partial t}{\partial z} = \frac{\lambda}{\rho c_p} \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right) \]
Chapter 8 - Convective Duct Flow

FIG. 5-3
Velocity profile for (a) laminar flow in a tube and (b) turbulent tube flow.
Chapter 8 - Convective Duct Flow

\[\dot{m} = \rho A u_m \]

\[\text{Re}_D = \frac{u_m D}{v} \]

\[\frac{u}{u_{\max}} = \left(1 - \frac{y^2}{b^2}\right) \]

Parallel plate duct

\[\frac{u}{u_m} = 2 \left\{1 - \left(\frac{r}{R}\right)^2\right\} \]

Circular pipe, tube

Laminar if pipe or tube \(\text{Re}_D < 2300 \)
Chapter 8 Convective Duct Flow

\[
\frac{L_i}{D} = 0.0575 \text{Re}_D
\]
Cont. duct flow

If \(Re_D > 2300 \)

Laminar boundary layer Turbulent boundary layer

Fully developed turbulent flow

Laminar boundary layer Turbulent boundary layer

omslag, transition

fullt utbildad turbulent strömning
Pressure drop fully developed flow

\[\Delta p = f \frac{L}{D_h} \frac{\rho u_m^2}{2} \]
\[f = \frac{C}{Re} \]
\[Re = \frac{u_m D_h}{\nu} \]

\[D_h = \text{hydraulic diameter} \]

\[D_h = \frac{4 \times \text{cross section area}}{\text{perimeter}} \]

\[u_m = \frac{\dot{m}}{\rho A} \]
Pressure drop - entrance region (circular pipe)

Figure 8.4
Convective heat transfer for an isothermal tube

\[t_w = \text{konstant; constant} \]
Convective heat transfer for an isothermal tube

Velocity field fully developed

\[u = 2u_m \left(1 - \left(\frac{r}{R} \right)^2 \right) \]

"Heat balance" for an element \(\text{dxdr} 2\pi r \)

Heat conduction in radial direction

Enthalpy transport in x-direction
Boundary conditions:

\[x = 0 : t = t_0 \]
\[r = R : t = t_w \]
\[r = 0 : \frac{\partial t}{\partial r} = 0 \text{ (Symmetry)} \]

Remember the figure from previous page

Energy eqn for steady state

\[\rho c_p u \frac{\partial t}{\partial x} = \lambda \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial t}{\partial r} \right) \]

"(8 – 12)"

Commonly called Graetz problem
Introduce \(r' = r|R, \quad x' = x|R, \quad \Theta = t - t_w, \)

\[
a = \frac{\lambda}{\rho c_p}
\]

Nusselt approach still valid

\[
\Rightarrow \quad \frac{u}{a} \frac{1}{R} \frac{\partial \Theta}{\partial x'} = \frac{1}{R r'} \frac{\partial}{\partial r'} \left(R r' \frac{\partial \Theta}{R \partial r'} \right)
\]

Introduce \(u = 2u_m (1 - r'^2) \quad \text{Coupling between velocity and average velocity} \)

\[
\frac{2u_m R}{a} \frac{\partial \Theta}{\partial x'} = \frac{1}{r'(1 - r'^2)} \frac{\partial}{\partial r'} \left(r' \frac{\partial \Theta}{\partial r'} \right)
\]

or

\[
\text{Re}_D \text{ Pr} \frac{\partial \Theta}{\partial x'} = \frac{1}{r'(1 - r'^2)} \frac{\partial}{\partial r'} \left(r' \frac{\partial \Theta}{\partial r'} \right) \quad (8-20)
\]
Steady heat conduction

\[\text{Re}_D \text{ Pr} \frac{\partial \Theta}{\partial x'} = \frac{1}{r'(1 - r'^2)} \frac{\partial}{\partial r'} \left(r' \frac{\partial \Theta}{\partial r'} \right) \]

(8 - 20)

compared with unsteady heat conduction:

\[\frac{\partial t}{\partial \tau} = a \left\{ \frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} \right\} = a \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial t}{\partial r} \right) \]
Assume \(\vartheta = F(x') \cdot G(r') \).

After some (8.24-8.28) calculations one finds

\[
\vartheta = \sum_{i=0}^{\infty} C_i G_i (r') e^{-\beta_i^2 x'/Re_D Pr} \quad (8 - 29)
\]

\(\beta_0 < \beta_1 < \beta_2 < \beta_3 < \beta_4 \ldots \)
Temperature profile in the thermal entrance region for a circular pipe with uniform wall temperature and fully developed laminar flow

\[
\begin{align*}
\beta_0 & = 2.705 \\
\beta_1 & = 6.667 \\
\beta_2 & = 10.67
\end{align*}
\]
the enthalpy flow of the mixture: \(\dot{m}c_p t_B \)

the enthalpy flow can be written

\[
\int_0^R \rho 2\pi r dr u c_p t \Delta \bar{m} \text{ "h"} \]

\[
\therefore t_B = \frac{1}{\bar{m}} \rho 2\pi \int_0^R ur t dr
\]

\[
\dot{m} = \int_0^R \rho 2\pi r dr u \left(\frac{\pi D^2}{4} \right) u_m
\]

\[
t_B = \frac{\int_0^R ur t dr}{\int_0^R ur dr}
\]

(8-34)
Local Nusselt number

- Local Nusselt number
- konstant värmeflöde, uniform heat flux
- konstant temperatur, constant wall temperature
- Hastighetsfält ej fullt utbildat; velocity field not fully developed

Graph showing the relationship between N_{ud} and x/D for different conditions.

Average Heat Transfer Coefficient

1. If the velocity field is fully developed ⇒

 \[
 \overline{Nu}_D = \frac{\bar{\alpha}D}{\lambda} = \left\{3.656 + \frac{0.0668 \text{Re}_D \text{Pr} D}{x} \right\} \left(\frac{\mu_B}{\mu_w}\right)^{0.14}
 \]

 N.B.! Higher values if velocity field not fully developed. Eq. (8-38) gives the average value

 \[
 \overline{Nu}_D = \frac{\bar{\alpha}D}{\lambda} = 1.86 \left\{\frac{\text{Re}_D \text{Pr}}{L/D}\right\}^{1/3} \left(\frac{\mu_B}{\mu_w}\right)^{0.14}
 \]

 \[
 L/D < 0.1 \quad \text{Re}_D \text{Pr} < 0.1 \quad t_w = \text{constant}
 \]
Fully developed flow and temperature fields

\[Nu_D = 4.364 \quad (8-50) \]

\[\downarrow \quad q_w = \alpha (t_w - t_B) \]

\[\text{konst} \quad \text{konst} \]

\[\Rightarrow t_w - t_B = \text{konst.} \]

If \(t_B \) increases, \(t_w \) must increase as much

Average value including effects of the thermal entrance length

\[
\overline{Nu_D} = \frac{\overline{q_w}}{\overline{\lambda}} = \begin{cases}
1.953 \left(\frac{1}{Re_D Pr} \frac{x}{D} \right)^{-1/3} \text{ if } \frac{x}{D} \frac{Pr}{Re_D} < 0.03 \\
4.364 + 0.0722 \frac{Re_D Pr}{x/D} \text{ if } \frac{x}{D} \frac{Pr}{Re_D} > 0.03
\end{cases}
\]
Fully developed flow and temperature fields

\[\text{Nu}_D = 4.364 \quad (8-50) \]

\[q_w = \alpha (t_w - t_B) \]

\[\Rightarrow t_w - t_B = \text{konst.} \]

If \(t_B \) increases, \(t_w \) must increase as much

\(t_w \) highest at the exit!