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1 Introduction

Heat transfer in pipes has important applications in many areas, such as for e.g.
heat exchangers. To improve this type of equipment, a good understanding is
needed of the relation between the velocity field and the temperature field. To
be able to control the rate of heat transfer between the pipe wall and the fluid, a
division is made into active (e.g. inducing vibrations) and passive techniques. A
popular passive technique for heat exchangers, to enhance the heat transfer rate,
is to use curved pipes (e.g. helically coiled, because of their compact structure).

In this field, the aim of a large portion of studies is to investigate the heat
transfer rate between the solid wall and the working fluid in the pipe, in partic-
ular focusing on the potential heat transfer enhancements caused by curvature.
However, to be able to contrast the results for the curved pipes, this short sur-
vey will begin by summarizing some of the important points regarding the flow
and heat transfer in straight pipes. A lot of general concepts will be introduced
in the straight pipe section.

2 Straight pipes

Before curved pipes are to be tackled, a short introduction to the properties of
straight pipes seem to be in order. The pipes are considered to have circular
cross section.

2.1 Isothermal flow in straight pipes

Flow regions in straight pipes are often classified based on the Reynolds number
Re = ρUbD/µ, where ρ is the (mass) density, Ub is the bulk flow, D is the pipe
diameter, and µ is the dynamic viscosity. Fully developed flow in straight pipes
with circular cross section admit a steady state analytic solution to the Navier-
Stokes equations, called (Hagen-)Poiseuille flow,

~U(r) = 2Ub

(
1− r2

R2

)
ẑ (1)
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where r is the radial distance from the pipe centerline, R = D/2, and ẑ is a unit
vector along the pipe axis. The velocity field in eq. (1) is stable only for low
Reynolds number, say Re < 2000, where the flow is laminar. For large Re the
flow becomes unstable, and eventually turbulent. It should however be noted
that the linearized Navier-Stokes equations for pipe flow are asymptotically
(t → ∞) stable for all Reynolds numbers (Re arbitrary large). This means
that the pipe flow can be kept laminar for much larger Re than stated above,
given that the inlet flow has a very low disturbance level, together with a low
roughness of the wall. The primary route to turbulence for pipe flow, given that
such a notion even exists, is unknown.

Flow in the entrance region, which is developing (changing in the z-direction),
may have a very different profile from that in eq. (1).

2.2 Heat transfer in straight pipes

A central quantity for heat transfer between the pipe wall and the fluid (inside
the pipe) is the heat transfer coefficient h,

h =
q

A(Tw − T∞)

where q is the heat transfer from the wall to the flow (measured in Watts W ),
A is the surface area, Tw is the wall temperature, and T∞ is the reference
temperature of the flow. A non-dimensional parameter frequently used is the
Nusselt number,

Nu =
hL

k
(2)

where L is a characteristic length and k is the thermal conductivity. In a step
further, k = α/(ρcp), α being the thermal diffusivity and cp the specific heat
(at constant pressure). For engineering applications, eq. (2) is typically used
for finding h, in cases where empirical expressions for the Nusselt number exist.
These empirical expressions of course depend on how the heat is transferred in
the particular system under consideration, which typically is very complicated,
requiring detailed numerical or experimental investigations.

However, under certain restrictive conditions, analytical expression can be
obtained for the Nusselt number. For example, for the fully developed flow in
eq. (1), assuming that the temperature doesn’t affect the flow, the heat transfer
rate for a constant wall temperature Tw > T∞ gives a constant Nusselt number,
Nu = 3.66. Similarly, using the same assumption for a constant wall heat flux,
the constant Nusselt number Nu = 4.36 is obtained.

A dimensionless parameter indicating the importance of buoyancy is the
Rayleigh number (Ra). For flow where buoyancy is of primary importance,
leading to so-called natural convection, the Nusselt number can be written as

Nu = Nu(Ra, Pr, ...)

Considering Rayleigh numbers below the critical, given that the flow is laminar,
heat transfer perpendicular to the flow is typically dominated by conduction.
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Keep in mind that when buoyancy (gravity) starts to play a role, the orientation
of the pipe becomes important. The Prandtl number Pr = µ/(ρα) is usually
also involved. Note that the Prandtl number is typically only weakly temper-
ature dependent. For convective heat transfer in flow which is not induced by
buoyancy, called forced convection, the Nusselt number instead becomes

Nu = Nu(Re, Pr, ...)

showing a Reynolds number dependence. The constant Nusselt number results
stated above are examples of forced convection. Extending the result for a
constant heat flux, allowing for buoyancy involving small rates of heating, was
done for a horizontal pipe by Morton (1958). The regions of interest were
considered to be far from the pipe entrance (giving fully developed profiles),
and the properties of the fluid were temperature independent, except for the
density in the buoyancy terms (Boussinesq approximation). The most important
parameter turned out to be the product ReRa of the Reynolds number and the
Rayleigh number. The Rayleigh number was defined as

Ra =
βρgτR4

αµ

where g is the gravitational acceleration, β is the thermal expansion coefficient,
and τ is the constant axial temperature gradient (which follows from the con-
stant heat flux at the wall). When buoyancy is added, the colder fluid in the core
moves downward and leads to two vertical vortices. The flow structure normal
to the pipe axis can be seen qualitatively in fig. (1b). Also, the maximum axial
velocity, which is located in the center of the pipe for the case without buoyancy,
is moved downward. This enhances the heat transfer rate on the bottom part
of the pipe.

Similar to the velocity field, the temperature field and heat transfer char-
acteristics can look very different close to the pipe inlet compared to the fully
developed situation, giving a thermal entrance region. Normally a flow heat
exchanger is designed to be short, to take advantage of the relatively large heat
transfer rates which typically appear in the thermal entrance region. However,
it should be noted that much more is known in general about fully developed
flow compared to developing flow.

For turbulent flow, the situation changes drastically, and the Nusselt number
may increase by several orders of magnitude. This is a result of the mixing
brought about by the unstable flow, and in particular the velocity fluctuations
in the wall normal (radial) direction. The flow and thermal entrance regions are
generally short for turbulent flow, and typically only fully developed flows are
studied.

3 Curved pipes

Heat transfer in curved pipes is considered in this section, which is often used
to enhance the heat transfer rate h (or Nu). The focus in this section is on
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pipe bends in a single plane (and with a constant curvature radius). However, a
lot of work has been done for heat transfer in helically coiled pipes, involving a
pitch (or helix angle), as reflected in the review article by Naphon & Wongwises
(2004).

3.1 Isothermal flow in curved pipes

Flow in curved pipes, due to centrifugal forces, gives rise to secondary flow. The
secondary flow structure takes the form of two counter-rotating axial vortices,
called the Dean vortices. Furthermore, the maximum axial velocity is shifted
towards the outer side of the pipe bend, giving rise to a larger shear stress at
the outer wall. For small curvature ratios γ ≡ R/Rc, where Rc is the radius of
curvature, the Dean number

De =
√
γRe

is a similarity parameter. For a review of laminar flow in curved pipes, see
Berger et al. (1983). The secondary motion of course not only affects (important
quantities such as) the pressure drop, but also the heat transfer characteristics.

3.2 Heat transfer in curved pipes

Fully developed laminar flow in heated curved pipes, with circular cross section,
were studied analytically by Yao & Berger (1978). The pipes were heated at a
uniform rate, giving a constant temperature gradient along its axis, and the flow
experienced both centrifugal and buoyancy forces (using the Boussinesq approx-
imation). The buoyancy terms, as stated in the section for the straight pipe,
will make the (cold) fluid in the core move downward and lead to two ”vertical”
vortices (when centrifugal forces are excluded). The resulting flow, including
both centrifugal forces and buoyancy, can be considered to lead to approximate
superpositions of the different flow modes (vortices). Both horizontal and verti-
cal pipes were considered, where perturbation expansions were made for small
values of De and ReRa. The results were considered to be valid for De2 . 500
and ReRa . 3000, and arbitrary values of Pr. The Reynolds number should be
considered small enough to ensure laminar flow. For the vertical 180◦ curved
pipe (”U-bend”), the two forces may either enhance each other or suppress each
other, depending on the location along the bend. At the entrance of the bend,
given that the flow travels upward, the two forces point in the same direction,
and the maximum axial flow is displaced towards the outer side of the bend. In
the middle of the pipe the centrifugal and buoyancy forces are perpendicular,
and the maximum axial velocity is again shifted towards the outer side of the
bend. After the 180◦ bend the centrifugal and buoyancy forces act in opposite
directions, and the resulting profile depends on the relative strength of the two
forces. The maximum axial velocity moves towards the outer part of the bend
when buoyancy is weak compared to the centrifugal force, and towards the inner
part when the buoyancy dominates over the centrifugal force. In particular, if
the forces are comparable in strength, the axial velocity distribution may be
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Figure 1: Streamlines, for the flow normal to the pipe axis, for a horizontal pipe.
(a) ReRa = 0, De 6= 0; (b) ReRa 6= 0, De = 0; (c) ReRa 6= 0, De 6= 0. Image
taken from Prusa & Yao (1982).

close to a Poiseuille profile. The temperature distribution was distorted in a
similar way as the axial velocity profiles (for both the horizontal and vertical
pipes). Nusselt number dependencies were also calculated analytically, which
for the horizontal pipe took the form

Nu = Nu(Re,Ra, Pr,De, ψ)

where ψ is the pipe circumferential angle, while for the vertical pipe there was
an additional dependence on the position (θ̃) along the pipe bend.

In the article of Prusa & Yao (1982), focusing only on horizontal curved
pipes, larger values of De and ReRa were considered than in Yao & Berger
(1978). Again, the boundary conditions at the wall gave a constant axial tem-
perature gradient along the pipe. Results are shown in fig. (1), where ReRa = 0
implies no buoyancy while De = 0 implies no pipe curvature. The Prandtl num-
ber was constant, Pr = 1. For a given axial pressure gradient, the mass flow
rate drastically reduced due to the secondary motion (because of the increased
dissipation). More importantly, again for a given axial pressure gradient, the to-
tal heat transfer rate was seen to decrease for increasing curvature or increasing
axial temperature gradient. A flow regime map was also given, showing where
the two forces dominate or are comparable in (ReRa,De)-space.

A numerical study of a horizontal 90◦ curved pipe (with circular cross sec-
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tion) was performed by Sillekens et al. (1994). The flow was laminar (Re = 500),
the curvature ratio γ = 1/14, and Pr = 0.7. The incoming flow had a parabolic
velocity profile (see eq. (1)) and a constant temperature T∞, while the wall in
the bend had a constant temperature Tw > T∞. The Boussinesq approximation
was used (and heat generation due to viscous dissipation was neglected). The
secondary flow, like for the cases above, resulted from the centrifugal influence
(resulting in a flow speed uDe) along with the buoyancy (resulting in a flow
speed uGr). The ratio of the two speeds were given as

uGr

uDe
= O

(√
Gr

De

)

introducing the Grashof number Gr,

Gr =
gρ2β(Tw − T∞)D3

µ2

For
√
Gr/De = 0, forced convective heat transfer is obtained (as in fig. (1a)),

while for
√
Gr/De sufficiently large, the convective heat transfer is mixed (as

in fig. (1c)). Velocity and temperature distributions are shown in fig. (2).
The temperature field is seen to correlate closely with the velocity field. When√
Gr/De = 0, the temperature distribution is seen to be symmetric about the

horizontal center line, along with the Dean vortices. The Nusselt number is
seen to reach a maximum value on the outer side of the pipe, and decreases
significantly towards the inner side. For

√
Gr/De > 0, on the other hand, the

Dean vortices are skewed, and the maximum axial velocity (and the maximum
axial velocity gradients and temperature gradients) is moved downward along
the outer side of the bend. The location for the maximum Nusselt number
therefore also gradually moves down in the pipe as

√
Gr/De increases. The

variation of the averaged Nusselt number along the bend, together with an
example of the variation between the inner and outer side, is given in fig. (3).
The peak in the result for

√
Gr/De = 4.09, to the right in fig. (3), is due to

insufficient resolution. The heat transfer characteristics are found to be greatly
enhanced in the curved pipe compared to a straight pipe (up to 250%), subject
to the same flow rate.

4 Summary & Conclusion

A rough overview of the flow and heat transfer characteristics in curved pipes
have been given. Some of the relevant dimensionless parameters have been in-
troduced, which can help in determining the relative importance of the different
phenomena. In general, the use of curved pipes leads to enhanced heat transfer
compared to straight pipes, at least for a given flow rate. Note that radiation
has been neglected in all cases considered.
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Figure 2: Cross sections of velocity and temperature distributions at 29◦ along
the horizontal pipe bend. Top: secondary velocity vectors and contours of the
axial velocity, bottom: contours of temperature. Left:

√
Gr/De = 0, right:√

Gr/De = 4.09. Images taken from Sillekens et al. (1994).
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Figure 3: a:
√
Gr/De = 0, b:

√
Gr/De = 2.37, c:

√
Gr/De = 3.33, d:√

Gr/De = 4.09, s: horizontal straight pipe. Left: Nusselt number, averaged
over the pipe circumference, as a function of position along the bend. Right:
variation of the the Nusselt number over the pipe circumference, at position
θ = 29◦ along the bend. φ = 0 corresponds the outer side of the bend, and
−180 < φ < 0 the bottom part. Images taken from Sillekens et al. (1994).
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